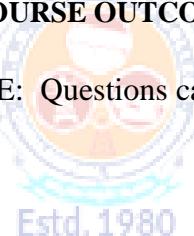


Course Code: D2516601				
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)		R25		
I M.Tech. I Semester MODEL QUESTION PAPER				
POWER SYSTEM OPERATION & CONTROL				
(for Power Systems & Automation)				
Time: 3 Hrs.	Max. Marks: 60 M			
Answer ONE Question from EACH UNIT				
All questions carry equal marks				
Assume suitable data if necessary				
		CO KL M		
UNIT-1				
1.	a). Explain the various constraints in unit commitment problem?	1 3 5		
	b). Obtain the economic schedule for the two units, the production costs of which are given follows to supply a load of 3MW, in steps of 1MW. $C_1=0.8 P_1+25P_1$; $C_2=1.2P_2+22P_2$ use dynamic programming method.	1 3 7		
OR				
2.	a). Explain the major differences between load flow and OPF problem formulation when inequality constraints are neglected?	1 3 5		
	b). Derive the OPF formulation considering generator real power limits and reactive power limits.	1 3 7		
UNIT-2				
3.	a). Explain briefly about modeling of single area load frequency control with a neat sketch	2 3 8		
	b). Find the static frequency drop if the load is suddenly increased by 25MW on a system having the following data: Rated capacity is 500MW, operating load is 250MW, inertia constant is 5s, governor regulation $R=2$ Hz/p.u MW, frequency is 50Hz. Also find the additional generation?	2 3 4		
OR				
4.	a). Draw the block diagram of a single-area system with PI control. Explain the roles of proportional and integral actions in correcting frequency deviations and eliminating steady-state error.	2 3 7		
	b). Two generators of rating 100MW and 200MW are operated with a droop characteristic of 6% from no load to full load. Find the load shared by each generator, if a load of 270MW is connected across the parallel combination of those generators?	2 3 5		
UNIT-3				
5.	a). Explain the static response of two area system for uncontrolled case?	3 3 7		
	b). Find the frequency of oscillations of the tie line power deviation for a two identical area system given the following data: $R=3.0$ Hz/p.u; $H=5$ s; $f_0=60$ Hz. The tie line has a capacity of 0.1p.u and is operating at a power angle of 45° ?	3 3 5		
OR				
6.	a). Explain about the Load Frequency Control (LFC) and Economic	3 3 4		


		Dispatch Control.			
	b).	Derive the steady-state relation between frequency deviation and tie-line power deviation for a two-area interconnected system.	3	3	8
UNIT-4					
7.	a).	Explain gradient search technique for economic dispatch with relevant expressions.	4	3	7
	b).	Derive the composite generation protection cost function?	4	3	5
OR					
8.	a).	Explain in brief, take-or-pay fuel contract system used in power generation with necessary expressions.	4	3	5
	b).	Explain how the fuel scheduling is done by linear programming?	4	3	7
UNIT-5					
9.	a).	Explain the concept of power pools with an example?	5	3	5
	b).	Explain about the economy inter change evaluation with an example?	5	3	7
OR					
10.	a).	Discuss about interchange evaluation with unit commitment	5	3	6
	b).	Explain the following i) Diversity interchange. ii)Emergency power interchange	5	3	6

CO-COURSE OUTCOME

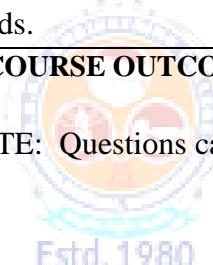
KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a Single Question for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D2516602							
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				R25			
I M.Tech. I Semester MODEL QUESTION PAPER							
SMART GRID TECHNOLOGIES							
(for Power System & Automation)							
Time: 3 Hrs.		Max. Marks: 60 M					
Answer ONE Question from EACH UNIT							
All questions carry equal marks							
Assume suitable data if necessary							
		UNIT-1		CO			
1.	a.	Explain the evolution of the electric grid and discuss the key differences between conventional and smart grids.	1	2			
	b.	Summarize the functions, opportunities, and barriers associated with the adoption of smart grids.	1	2			
		OR					
2.	a.	Illustrate the concept of a resilient and self-healing grid with suitable diagrams or examples.	1	3			
	b.	Compare international policies and present developments on smart grid deployment.	1	4			
		UNIT-2					
3.	a.	Explain the architecture and working of smart meters and their role in real-time pricing.	2	2			
	b.	Illustrate the functioning of smart appliances and their contribution to energy efficiency.	2	3			
		OR					
4.	a.	Compare the benefits of smart sensors and home/building automation in enhancing consumer participation.	2	4			
	b.	Analyze the role of Plug-in Hybrid Electric Vehicles (PHEVs) and Vehicle-to-Grid (V2G) technologies in balancing demand and supply.	2	4			
		UNIT-3					
5.	a.	Explain the significance of smart substations in the operation of modern distribution networks.	3	2			
	b.	Describe the role of Intelligent Electronic Devices (IEDs) in monitoring, protection, and automation of substations.	3	2			
		OR					
6.	a.	Illustrate the importance of Geographic Information Systems (GIS) in feeder automation and outage management.	3	3			
	b.	Analyze the contribution of smart storage technologies like batteries, SMES, pumped hydro, and CAES to grid reliability.	3	4			


UNIT-4					
7.	a).	Explain the concept of microgrids and their role in modern electrical networks.	4	2	6
	b).	Discuss the various applications of microgrids in urban, rural, and remote areas.	4	2	6
OR					
8.	a).	Illustrate the process of formation and architecture of a microgrid with suitable diagrams.	4	3	6
	b).	Compare different protection schemes suitable for microgrid operation.	4	4	6
UNIT-5					
9.	a).	Explain the significance of power quality in smart grids and its effect on sensitive loads.	5	2	6
	b).	Illustrate the principle and working of power quality conditioners used in smart grids.	5	3	6
OR					
10.	a).	Describe common power quality issues associated with renewable energy integration.	5	2	6
	b).	Analyze the electromagnetic compatibility (EMC) challenges in smart grids.	5	4	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D2516603									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
REACTIVE POWER COMPENSATION AND MANAGEMENT									
(for Power System & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Demonstrate how phase balancing and power factor correction can be applied to an unsymmetrical load to improve system efficiency			1				
		OR							
2.	a).	What are reactive characteristics of ideal load compensator? Discuss its objectives.			1				
	b).	Explain how a Load Compensator works as a voltage regulator			1				
		UNIT-2							
3.	a).	Discuss about the four characteristic time periods of a transient state in a compensated transmission line.			2				
	b).	Explain how the voltage is controlled with shunt reactors			2				
		OR							
4.	a).	Explain how shunt compensation is obtained by means of Mid-point shunt reactor or capacitor in transmission lines			2				
		UNIT-3							
5.	a).	Explain the concept of quality of power supply with reactive power coordination.			3				
	b).	List and explain briefly the basic methods of load shaping in demand side.			3				
		OR							
6.	a).	Explain the various System losses and the loss reduction methods used in Demand side management			3				
	b).	Explain about : a) Retrofitting of capacitor banks b) Deciding factors			3				
		UNIT-4							
7.	a).	Explain the various system losses and the loss reduction methods used in distribution side reactive power management			4				
	b).	Explain kVAR requirements for domestic appliances in User side reactive power management			4				
		OR							
8.	a).	What is the purpose of using capacitors on user side reactive power management and also explain in detail the types of available capacitors			4				
					3				
					12				

		with their characteristics and limitations?			
UNIT-5					
9.	a).	Explain the power factor of an electric arc furnace	5	3	6
	b).	Demonstrate how furnace transformers are applied in arc furnace operations to handle fluctuating loads.	5	3	6
OR					
10.	a).	Draw typical layouts of Ac traction systems and explain its operation	5	3	6
	b).	Discuss on the filter requirements for the reactive power in arc furnace	5	3	6

CO-COURSE OUTCOME

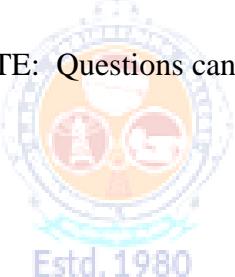
KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25166A0									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
ELECTRICAL DISTRIBUTION AUTOMATION									
(Power System & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1				CO	KL				
1.	a.	Analyze the importance of load factor, demand factor, diversity factor, and coincidence factor in planning of distribution systems.			1				
	b.	Analyze the role of computers in distribution system planning and load modelling.			1				
OR									
2.	a.	Analyze the relationship between load factor and loss factor with a practical example.			1				
	b.	Examine the classification of loads (Residential, Commercial, Agricultural, Industrial) and analyze their impact on distribution system design.			1				
UNIT-2									
3.	a.	Analyze feeder loading and voltage level selection in distribution feeder design.			2				
	b.	Analyze the design considerations of radial and loop feeders and justify which type is more reliable.			2				
OR									
4.	a.	Analyze the factors influencing the location and rating of distribution substations.			2				
	b.	Justify the benefits derived through optimal substation location with an example.			2				
UNIT-3									
5.	a.	Explain the general procedure for coordination of protective devices in distribution system.			3				
	b.	Explain the main objectives of distribution system protection.			3				
OR									
6.	a.	Explain the coordination procedure between protective devices such as fuse and circuit breaker.			3				
	b.	Enumerate the common faults in distribution systems and outline the procedure for fault calculation.			3				
UNIT-4									
7.	a.	Explain the effect of shunt capacitors (fixed and switched) on power			4				
					3				
					6				


		factor correction and system losses.			
	b).	Describe the procedure to determine the best location of capacitors in a distribution system.	4	3	6
OR					
8.	a).	Explain different voltage control equipment used in distribution systems such as AVR _s , line drop compensators, and series capacitors.	4	3	6
	b).	Explain the economic benefits of installing capacitors in distribution networks.	4	3	6
		UNIT-5			
9.	a).	Explain the architecture and functions of SCADA in distribution automation.	5	3	6
	b).	Describe the applications of synchro-phasors in monitoring and control of power systems.	5	3	6
OR					
10.	a).	Explain the functional scope of Distribution Management Systems (DMS) and Energy Management Systems (EMS) in distribution automation.	5	3	6
	b).	Describe the role of Geographic Information Systems (GIS) and AM/FM functions in distribution automation.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a Single Question for 12 marks

Course Code: D25166A1							
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				R25			
I M.Tech. I Semester MODEL QUESTION PAPER							
ADVANCED POWER SYSTEM PROTECTION							
(for Power System & Automation)							
Time: 3 Hrs.		Max. Marks: 60 M					
Answer ONE Question from EACH UNIT							
All questions carry equal marks							
Assume suitable data if necessary							
		UNIT-1	CO	KL	M		
1.	a.	Draw and explain the Schmitt Trigger circuit. How does it function as a level detector?	1	4	6		
	b.	Draw and describe the operation of a zero-crossing detector circuit.	1	4	6		
		OR					
2.	a.	Compare UJT triggering circuit and RC triggering circuit for thyristors.	1	4	6		
	b.	State and explain the principle of duality in comparator circuits.	1	4	6		
		UNIT-2					
3.	a.	What is a Phase Splitting Amplitude Comparator? Derive the condition under which it operates.	2	4	6		
	b.	Write the generalized equation for phase comparison. Show how discrimination depends on the angle between inputs.	2	4	6		
		OR					
4.	a.	Explain the working principle of Vector Product type Phase comparator. How does it achieve discrimination?	2	4	6		
	b.	Explain how the characteristics of amplitude comparators influence relay performance.	2	4	6		
		UNIT-3					
5.	a.	Explain the principle of operation of static distance relays and classify them into impedance, reactance, and mho relays.	3	4	6		
	b.	Draw the block diagram of a multi-input comparator used in static relays and explain its role in decision-making.	3	4	6		
		OR					
6.	a.	What is meant by "zone of protection" in distance relays? How is it set for a transmission line?	3	4	6		
	b.	What is a power swing? Why can it cause unwanted tripping of distance relays?	3	4	6		
		UNIT-4					
7.	a.	Explain the principle of the circulating current scheme in wire pilot protection?	4	4	6		
	b.	What are the advantages and disadvantages of the half wave comparison scheme?	4	4	6		

OR					
8.	a).	Explain the working of the translay scheme in differential pilot wire protection.	4	4	6
	b).	Explain phase comparison type carrier current protection and how does it operate?	4	4	6
UNIT-5					
9.	a).	Explain the working principle of microprocessor-based impedance relay and its applications in power system protection.	5	4	6
	b).	Describe the Mann-Morrison technique used in numerical relaying algorithms.	5	4	6
OR					
10.	a).	Describe the operation of microprocessor-based reactance relay and explain why it is not affected by fault arc resistance.	5	4	6
	b).	Explain the differential equation technique and how it is applied in numerical protection algorithms.	5	4	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

Course Code: D25166A2									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
ELECTRIC VEHICLES									
(for Power System & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
			CO	KL	M				
UNIT-1									
1.	a).	Classify fundamentals of vehicles and the components of conventional vehicles	1	2	6				
	b).	List different types of propulsion loads and explain rolling resistance.	1	2	6				
OR									
2.	a).	List out the historical development of electric vehicles.	1	2	6				
	b).	Compare conventional, electric, and hybrid vehicles with respect to efficiency, emissions, and running cost.	1	2	6				
UNIT-2									
3.	a).	Define a Plug-in Hybrid Vehicle (PHEV). Explain how it differs from a conventional HEV.	2	2	6				
	b).	Define a Fuel Cell Electric Vehicle (FCEV). Explain its working principle.	2	2	6				
OR									
4.	a).	Distinguish between a conventional drivetrain and an electric drivetrain.	2	2	6				
	b).	Compare BEV, HEV, PHEV, and FCEV with respect to efficiency, emissions, and range.	2	2	6				
UNIT-3									
5.	a).	Explain why motor selection is critical in EV performance.	3	3	6				
	b).	Explain why PMSM or BLDC motors are widely used in modern EVs.	3	3	6				
OR									
6.	a).	Define regenerative braking. Explain its working principle in EVs.	3	3	6				
	b).	Discuss the motor control requirements of two-wheelers and four-wheelers.	3	2	6				
UNIT-4									
7.	a).	Discuss the application of a buck converter in HEVs with an example.	4	2	6				
	b).	Draw and explain the circuit of a Voltage Source Inverter used in HEVs.	4	3	6				
OR									
8.	a).	What is an isolated bidirectional DC-DC converter? List its	4	3	6				

		constituents.			
	b).	Compare a conventional rectifier with a PWM rectifier in HEV applications.	4	3	6
UNIT-5					
9.	a).	Define energy storage. List and explain key parameters such as energy density, power density, efficiency, and cycle life.	5	3	6
	b).	Explain the working of a pumped hydroelectric energy storage system with a neat sketch.	5	3	6
OR					
10.	a).	Compare ultra-capacitors with batteries in terms of performance characteristics.	5	3	6
	b).	What is compressed air energy storage? Explain its principle of operation.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25166B0						
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R25			
I M.Tech. I Semester MODEL QUESTION PAPER						
HVDC TRANSMISSION						
(for Power System & Automation)						
Time: 3 Hrs.		Max. Marks: 60 M				
Answer ONE Question from EACH UNIT						
All questions carry equal marks						
Assume suitable data if necessary						
		CO	KL	M		
UNIT-1						
1.	a).	What are the applications of DC Transmission and also mention the modern trends in HVDC technology		1	2	6
	b).	Explain the basic conversion principles with neat circuit diagrams?		1	2	6
OR						
2.	a).	Mention the advantages of HVDC technical economical reliability aspects?		1	2	6
	b).	Explain the types of HVDC links and its purpose with a neat diagram?		1	2	6
UNIT-2						
3.	a).	Explain the rectifier and inverter operation of a power converter and also write the equivalent circuit of converter?		2	2	6
	b).	Illustrate the circuit diagram analysis of a 12-pulse converter. And also calculate		2	3	6
OR						
4.	a).	Illustrate the schematic diagram of 3-phase bridge rectifier		2	3	6
	b).	Discuss the combine characteristics for the Rectifier and Inverter.		2	2	6
UNIT-3						
5.	a).	Discuss about the modes of Converter Control Characteristics.		3	2	6
	b).	Analyse and draw the diagram for Current and Extinction Angle control.		3	3	6
OR						
6.	a).	Explain the diagram of system control hierarchical structure of HVDC Link.		3	2	6
	b).	Discuss about the Harmonics characteristics calculation procedure with suitable expression.		3	3	6
UNIT-4						
7.	a).	Explain the interaction between HVAC & DC systems?		4	3	6
	b).	Briefly explain what are the different harmonic instability problems?		4	2	6
OR						
8.	a).	Mention the importance of multi-terminal DC links?		4	2	6

	b).	Explain series connected multi terminal DC link with suitable diagram?	4	2	6
UNIT-5					
9.	a).	Explain about over voltage and over current protection in the converter station?	5	2	6
	b).	Explain in brief converter faults and protection in HVDC system	5	2	6
OR					
10.	a).	Explain briefly about surge arrester and their application?	5	2	6
	b).	Discuss about over voltage protection.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25166B1									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
POWER ELECTRONIC CONVERTERS									
(Power System & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1									
1.	a).	What is deferent between MOSFET and IGBT	1	3	6				
	b).	Describe the switching characteristics of power MOSFET and what are the requirements of gate Drive circuit to get less turn off and turn on times?	1	3	6				
OR									
2.	a).	Describe the operation of GTO and draw its static characteristics.	1	3	6				
	b).	Describe the operation of GaN and draw its V-I characteristics.	1	3	6				
UNIT-2									
3.	a).	Define and distinguish between continuous conduction mode (CCM) and discontinuous conduction mode (DCM) in a single-phase fully controlled bridge converter feeding an RL load.	2	4	6				
	b).	A single-phase full converter is supplied from 230V, 50Hz source. The load consists of $R=10\text{ohms}$ and $E=100\text{V}$ and a large inductor so as to maintain the load current constant. For a firing angle of 45, find i) Average output voltage ii) Average output current iii) Average and R.M.S values of thyristor currents. iv) Input Power factor.	2	4	6				
OR									
4.	a).	Derive the expression for the average DC output voltage, for a three-phase fully controlled bridge in CCM.	2	4	6				
	b).	Explain the structure and working of a three-phase dual converter, defining both circulating-current and non-circulating-current modes.	2	4	6				
UNIT-3									
5.	a).	Define phase displacement control in single-phase inverters. How is the output voltage adjusted using this method?	3	4	6				
	b).	Describe the difference between bipolar and unipolar PWM modes in single-phase full-bridge inverters.	3	4	6				
OR									
6.	a).	A unipolar PWM inverter is fed from a 230 V DC bus and modulated at 50 Hz. What are the advantages of using unipolar over bipolar PWM	3	4	6				

		in terms of harmonic reduction and switching losses?			
	b).	Define space vector modulation and explain how it synthesizes the reference voltage vector using switching states.	3	4	6
UNIT-4					
7.	a).	Define a multilevel inverter and explain why they are gaining popularity over traditional two-level inverters in high-voltage, high-power applications.	4	4	6
	b).	Explain the principle of operation of a diode-clamped inverter and how output voltage levels are generated using clamping diodes and capacitor voltage divisions.	4	4	6
OR					
8.	a).	Describe the operating principle of the cascaded H-bridge Mult Inverter, including its modular series of full H-bridge cells.	4	4	6
	b).	Explain the structure and working principle of the Modular Multilevel Converter (MMC), emphasizing its use of multiple submodules and ability to generate high-quality multilevel output with scalable modular design.	4	4	6
UNIT-5					
9.	a).	What are the effects on output harmonic content and switching losses compared to PWM techniques?	5	3	6
	b).	Why is capacitor voltage balancing critically important in diode-clamped multilevel inverters?	5	3	6
OR					
10.	a).	Explain how SPWM works in the context of a diode-clamped MLI, including the generation of switching pulses using a reference sine wave and triangular carriers.	5	3	6
	b).	How does PSPWM affect THD and voltage sharing among H-bridge cells compared to level-shifted methods?	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

Course Code: D25166B2									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
PROGRAMMABLE LOGIC CONTROLLERS & APPLICATIONS									
(for Power Systems & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
			CO	KL	M				
UNIT-1									
1.	a).	Explain the architecture of a typical PLC system.	1	3	6				
	b).	With the help of a neat diagram, describe the construction of PLC ladder diagrams.	1	3	6				
OR									
2.	a).	Compare the various types of programming equipment used for PLCs.	1	3	6				
	b).	List and explain the devices commonly connected to I/O modules of a PLC.	1	3	6				
UNIT-2									
3.	a).	Illustrate the use of input and output instructions in PLC programming.	2	3	6				
	b).	With neat sketches, construct the ladder diagram and design the flow chart for a spray process system.	2	3	6				
OR									
4.	a).	Discuss the role of digital logic gates in PLC programming.	2	3	6				
	b).	Describe the operational procedure of a drill press using PLC programming.	2	3	6				
UNIT-3									
5.	a).	Define PLC registers and explain their characteristics.	3	3	6				
	b).	Explain different timer functions in PLCs and demonstrate their application in industrial processes.	3	3	6				
OR									
6.	a).	Describe the working of counters in PLC programming. Illustrate counter functions with at least two industrial applications.	3	3	6				
	b).	Explain arithmetic, number comparison, and number conversion functions in PLC programming.	3	2	6				
UNIT-4									
7.	a).	Explain the functions of SKIP, Master Control Relay (MCR), and Jump instructions in PLCs.	4	2	6				
	b).	Write detailed notes on FIFO, FAL, ONS, CLR, and Sweep functions.	4	2	6				
OR									

8.	a).	Illustrate how bit pattern manipulation and sequence functions are implemented in industrial control systems.	4	3	6
	b).	Discuss how PLCs are used in controlling two-axis and three-axis robots.	4	2	6
		UNIT-5			
9.	a).	Explain the operation of analog modules and systems in PLCs.	5	2	6
	b).	Demonstrate the procedure for PID tuning with suitable examples.	5	3	6
		OR			
10.	a).	Examine how multi-bit data processing is handled in PLC systems.	5	3	6
	b).	Explain the working of a position indicator with PID control.	5	2	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

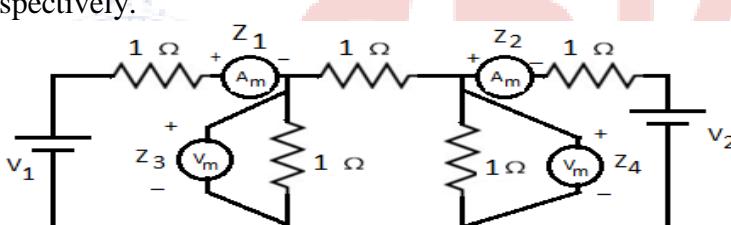
NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

I M.Tech. II Semester MODEL QUESTION PAPER

REAL TIME CONTROL OF POWER SYSTEMS

(for Power Systems & Automation)


Time: 3 Hrs.

Max. Marks: 60 M

Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

			CO	KL	M
UNIT-1					
1.	a).	Explain different types of state estimations in detail	1	2	6
	b).	Give the procedure for data processing algorithm(WLS) for converting redundant meter readings into estimate of states of a system and use the following data - In the DC circuit of figure below, the meter readings are $z_1=9.01$ A, $z_2=3.02$ A, $z_3=6.98$ V and $z_4=5.01$ V. Assuming the ammeters are more accurate than the voltmeters, let us assign the measurement weights $w_1=100$, $w_2=100$, $w_3=50$ and $w_4=50$, respectively.	1	4	6
Estd. 1980 OR					
2.	a).	In estimating the states explain about various criterions of state estimation?	1	2	6
	b).	Write procedure for detection, identification and elimination of bad data measurement by using a suitable test.	1	4	6
UNIT-2					
3.	a).	Explain about network sensitivity factors by using linear power flow solution.	2	4	6
	b).	What is a contingency? Explain basic process in analyzing contingency in power system	2	4	6
		OR			
4.	a).	Discuss the generator contingency analysis. Explain its effects on power systems	2	4	6
	b).	Explain about the Bounding and Concentric Relaxation	2	4	6
UNIT-3					
5.	a).	Explain about the operating states of power system with its state diagram	3	3	6

	b). What is energy control center? Explain its function in detail	3	2	6
OR				
6.	a). Explain about major elements of modern energy management system in detail	3	3	6
	b). Discuss various functions of SCADA in power system network	3	2	6
UNIT-4				
7.	a). What are P-V and V-Q curves? Discuss how these help in studying voltage stability of power system.	4	4	6
	b). Discuss different methods of improving voltage stability of power system.	4	4	6
OR				
8.	a). What is Voltage collapse? Explain about the different types of voltage stabilities	4	3	6
	b). Explain about voltage stability static indices	4	4	6
UNIT-5				
9.	a). What is PMU? Explain its functions and placement in power system network.	5	2	6
	b). Explain about the estimation of phasor and frequency using PMU	5	4	6
OR				
10.	a). By using Phasor measurement how to assess the voltage stability in power system	5	4	6
	b). Write procedure of detecting faults in power system network using PMU.	5	4	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

Estd. 1980

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25			
I M.Tech. II Semester MODEL QUESTION PAPER								
RESTRUCTURED POWER SYSTEMS								
(for Power System & Automation)								
Time: 3 Hrs.			Max. Marks: 60 M					
Answer ONE Question from EACH UNIT								
All questions carry equal marks								
Assume suitable data if necessary								
UNIT-1								
1.	a).	Discuss the concept of deregulation in the power sector and examine the economic, technical, and policy conditions required to implement successfully.	1	2	6			
	b).	Analyze the role of least-cost operation and incremental cost analysis in ensuring system-wide optimality, especially under deregulated conditions.	1	4	6			
OR								
2.	a).	Explain in detail the differences between market architecture and market structure in deregulated power systems, providing suitable diagrams.	1	2	6			
	b).	Evaluate critically the benefits and drawbacks of deregulated electricity markets with respect to consumer cost, reliability, and investor confidence.	1	3	6			
Estd. 1980 ENGINEERING COLLEGE AUTONOMOUS								
UNIT-2								
3.	a).	List and discuss in detail the various ownership and management models in the electricity industry, explaining their operational philosophies	2	2	6			
	b).	Evaluate the regulatory, social, and infrastructural challenges faced by governments when transitioning from a monopoly-based structure to retail competition.	2	2	6			
OR								
4.	a).	Explain the monopoly model of electricity supply and assess its long-term effects on consumers, utilities, and the government.	2	2	6			
	b).	Illustrate and describe the working of a purchasing agency model with the help of a block diagram, elaborating on its advantages and shortcomings.	2	2	6			
UNIT-3								
5.	a).	Explain the principle of Locational Marginal Pricing (LMP) with a case-study-based example and discuss its role in managing transmission congestion.	3	2	6			

	b).	Compare comprehensively bilateral trading and pool-based markets with respect to operational flexibility, pricing fairness, and risk allocation	3	3	6
		OR			
6.	a).	Explain the concepts of bilateral and pool markets, highlighting their differences in terms of flexibility, transparency, and risk-sharing	3	2	6
	b).	Evaluate the effectiveness of LMP-based markets in achieving congestion management, providing evidence from international practices.	3	3	6
		UNIT-4			
7.	a).	Explain in essay form the concept of power wheeling and analyze its economic significance in deregulated electricity markets.	4	2	6
	b).	Compute and explain transmission cost allocation for different participants under wheeling arrangements.	4	4	6
		OR			
8.	a).	Illustrate the process of congestion management using the market splitting approach, highlighting its operational steps with diagrams	4	2	6
	b).	Compare market splitting and counter-trading in detail, presenting their relative merits and drawbacks in terms of cost and effectiveness.	4	3	6
		UNIT-5			
9.	a).	List and describe in detail various ancillary services required in deregulated power systems, elaborating on their roles in system security.	5	2	6
	b).	Illustrate and describe frequency regulation as an ancillary service, showing how automatic generation control (AGC) contributes to system balance.	5	2	6
		OR			
10.	a).	Explain comprehensively the importance of system security in deregulated markets with reference to blackouts and reliability indices.	5	2	6
	b).	Evaluate the regulatory challenges in ensuring that deregulated markets maintain fairness, security, and consumer protection.	5	2	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

Course Code: D2526603

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

R25

I M.Tech. II Semester MODEL QUESTION PAPER

FLEXIBLE AC TRANSMISSION SYSTEMS

(for Power System & Automation)

Time: 3 Hrs.

Max. Marks: 60 M

Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

UNIT-1			CO	KL	M
1.	a).	Explain the concept of controllable parameters in an AC power transmission system. Why are they important for system performance	1	2	6
	b).	Explain the basic types of FACTS controllers with their working principle.	1	2	6
OR					6
2.	a).	Discuss in detail about dynamic stability considerations in controlling power systems	1	2	6
	b).	Discuss in detail about the benefits of Facts Controllers in the power systems	1	2	6
UNIT-2					6
3.	a).	Compare the current source converters and voltage source converters	2	2	6
	b).	Explain in detail about the objectives of shunt compensation	2	2	6
OR					6
4.	a).	Explain in detail about the methods of VAR generation	2	2	6
	b).	Explain in detail about the methods about power oscillation damping methods in power systems	2	2	6
UNIT-3					6
5.	a).	Derive the transfer function of a FACTS-based compensator	3	3	6
	b).	Discuss the importance of FACTS devices in transient stability enhancement.	2	3	6
OR					6
6.	a).	Discuss in detail about Transient Stability Enhancement and Power Oscillation Damping	2	3	6
	b).	Explain about Variable Impedance Type Static Var Generators	2	3	6
UNIT-4					6
7.	a).	Explain in detail about the objectives of series compensation	2	4	6
	b).	Discuss about GTO thyristor controlled series capacitor (GSC) to compensate series compensation	2	4	6
OR					6
8.	a).	Discuss in detail about thyristor switched series capacitor (TSSC)	2	4	6
	b).	Explain in detail about thyristor controlled series capacitor (TCSC)	2	4	6
UNIT-5					6
9.	a).	Discuss in detail about operating principle of conventional transmission	2	5	6

		control capabilities			
	b).	Explain in detail about independent real and reactive power flow control	2	5	6
		OR			6
10.	a).	Compare unified power flow controller (UPFC) with series compensators and phase angle regulators.	2	5	6
	b).	Explain in detail about operation of Inter line Power Flow Controller (IPFC)	2	5	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25266A0										
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)						R25				
I M.Tech. II Semester MODEL QUESTION PAPER										
GENERATION AND MEASUREMENT OF HIGH VOLTAGES										
(for Power Systems & Automation)										
Time: 3 Hrs.			Max. Marks: 60 M							
Answer ONE Question from EACH UNIT										
All questions carry equal marks										
Assume suitable data if necessary										
				CO	KL	M				
UNIT-1										
1.	a).	What are the different dielectric materials according to their physical nature?	1	3	6					
	b).	Discuss briefly the “Charge Simulation Method” for solving Field Problems and estimation of potential distribution.	1	3	6					
OR										
2.	a).	Discuss the different numerical methods available for estimation of electric field distribution in dielectric media.	1	3	6					
	b).	What is “Finite Element Method” ? Give the outline of this method for solving the field problems.	1	3	6					
UNIT-2										
3.	a).	Explain with neat diagram the principle of operation, application and limitations of Vande Graff generator.	2	3	6					
	b).	What is the principle of operation of a resonant transformer? How is it advantageous over the cascade connected transformers?	2	3	6					
OR										
4.	a).	Why is a Cockcroft-Walton circuit preferred for voltage multiplier circuits? Explain its working with a schematic diagram.	2	3	6					
	b).	An impulse current generator has total capacitance of $15\mu\text{F}$, the charging voltage 125 kv, the circuit inductance 2mH and the dynamic resistance 1ohm. Determine the peak current and wave shape of the wave.	2	3	6					
UNIT-3										
5.	a).	Give the Marx circuit arrangement for multistage impulse generation. How is the basic arrangement modified to accommodate the wave time control resistances?	3	3	6					
	b).	Explain the different methods of producing switching impulses in test laboratories.	3	3	6					
OR										
6.	a).	How are the wave-front and wave-tail times controlled in impulse generator circuits?	3	3	6					
	b).	A 12-stage impulse generator has $0.126 \beta\text{F}$ capacitors. The wave-front and the wave-tail resistances connected are 800 ohms and 5000 ohms respectively. If the load capacitor is 1000 pF , find the front and tail times	3	3	6					

		of the impulse wave produced.			
		UNIT-4			
7.	a).	Explain the principle and construction of an electrostatic voltmeter for very high voltages. What are its merits and demerits for high-voltage ac measurements?	4	3	6
	b).	Describe the generating voltmeter used for measuring high dc voltages. How does it compare with a potential divider for measuring high dc voltages?	4	3	6
		OR			
8.	a).	Discuss the different methods of measuring high dc voltages. What are the limitations in each method?	4	3	6
	b).	Compare the relative advantages and disadvantages of using a series resistance microammeter and a potential divider with an electrostatic voltmeter for measuring high dc voltages?	4	3	6
		UNIT-5			
9.	a).	Give the schematic arrangement of an impulse potential divider with an oscilloscope connected for measuring impulse voltages. Explain the arrangement used to minimize errors.	5	3	6
	b).	Explain the different methods of high current measurements with their relative merits and demerits.	5	3	6
		OR			
10.	a).	Give the basic circuit for measuring the peak voltage of (a) ac voltage, and (b) impulse voltage. What is the difference in measurement technique in the above two cases?	5	3	6
	b).	What are the different types of resistive shunts used for impulse current measurements? Discuss their characteristics and limitations.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

Course Code: D25266A1

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

R25

I M.Tech. II Semester MODEL QUESTION PAPER

EVOLUTIONARY ALGORITHMS IN POWER SYSTEMS

(Power System & Automation)

Time: 3 Hrs.

Max. Marks: 60 M

Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

UNIT-1			CO	KL	M
1.	a).	Differentiate the classical computing and swarm computing	1	3	6
	b).	Discuss the concepts of exploitation and exploration in population-based algorithms	1	3	6
OR					
2.	a).	Illustrate the mechanism of population-search based algorithms to eliminate the local minima and maxima with a suitable example	1	4	8
	b).	Explain the need for soft computing techniques in power systems	1	2	4
UNIT-2					
3.	a).	Explain the crossover and mutation operations in GA with numerical examples	2	2	6
	b).	Discuss the common and control parameters of PSO	2	4	6
OR					
4.	a).	Implement the design procedure of solution of economic load dispatch problem using GA	2	4	12
UNIT-3					
5.	a).	Explain the Ant colony optimization with the help of its flow chart and provide the updating mechanism of the solutions with a numerical example. (Assume necessary data)	3	3	12
OR					
6.	a).	Apply Artificial Bee Colony Algorithm to a control design problem and explore the procedure to identify the PI controller gains	3	3	12
UNIT-4					
7.	a).	Illustrate the behavior of microbats in BAT algorithm	4	3	6
	b).	Explain various control parameters of the BAT algorithm	4	3	6
OR					
8.	a).	Elaborate the procedure of global exploration in shuffled frog leaping algorithm.	4	3	6
	b)	Explain various control parameters of the shuffled frog leaping algorithm.	4	3	6

UNIT-5					
9.	a).	Explain the Concept of Pareto optimality.	5	3	12
		OR			
10.	a).	Explain NSGA-II algorithm in detail	5	3	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25266A2

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

R25

I M.Tech. II Semester MODEL QUESTION PAPER

ENERGY AUDIT CONSERVATION & MANAGEMENT

(for Power Systems & Automation)

Time: 3 Hrs.

Max. Marks: 60 M

Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

		UNIT-1			CO	KL	M
1.	a).	Explain the objectives and importance of energy audits in industries.		1	3	6	
	b).	Describe the use and significance of Sankey diagrams in energy auditing.		1	3	6	
		OR					
2.	a).	What are energy conservation schemes? Describe with examples from industrial or commercial sectors.		1	3	6	
	b).	Explain the different types of energy audits and highlight their differences.		1	3	6	
		UNIT-2					
3.	a).	Elaborate the functions and qualities required in an energy manager.		2	3	6	
	b).	Explain the role of energy audit in an energy management programme.		2	3	6	
		OR					
4.	a).	Describe the necessary steps involved in implementing an effective energy management programme.		2	3	6	
	b).	Discuss the principles of energy management.		2	3	6	
		UNIT-3					
5.	a).	Describe methods for achieving energy-efficient lighting in commercial and industrial buildings.		3	3	6	
	b).	What are different lighting control methods used for energy saving?		3	3	6	
		OR					
6.	a).	What are energy-efficient motors? Explain types, selection criteria, and economic impact.		3	3	6	
	b).	What is over motoring? Why should it be avoided in energy management?		3	3	6	
		UNIT-4					
7.	a).	Define power factor. Explain two methods of power factor improvement with neat diagrams.		4	3	6	
	b).	What factors influence the location of capacitors in a power system?		4	3	6	
		OR					
8.	a).	Discuss the impact of harmonics on power factor and suggest corrective measures.		4	3	6	
	b).	Differentiate between pyrometers and thermocouples in temperature measurement.		4	3	6	

		UNIT-5		
9.	a).	Discuss the use of the net present value (NPV) method.	5	3
	b).	Define the time value of money. Why is it important in economic analysis of energy projects?	5	3
		OR		
10.	a).	Explain the concept of life cycle costing (LCC).	5	3
	b).	Define return on investment (ROI). How is it used for decision making in energy efficiency projects?	5	3

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25266B0									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
POWER QUALITY ENHANCEMENT USING CUSTOM POWER DEVICES									
(for Power System & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Define power quality and explain its importance in modern electrical systems.			1				
	b).	Explain the effect of nonlinear loads on power quality and their impact on harmonics.			3				
		OR							
2.	a).	What are voltage sags, swells and flicker? Explain their effects and mitigation methods.			6				
	b).	Discuss the causes of voltage and current interruptions in electrical networks. How can these be minimized?			1				
		UNIT-2							
3.	a).	Explain various lightning protection schemes used in transmission systems.			2				
	b).	Explain the different devices used for voltage regulation in distribution systems with their working principles and applications.			3				
		OR							
4.	a).	Analyse load switching transient problems. How can they be minimized in industrial power systems?			6				
	b).	Describe the role of distributed generation in regulating utility voltage. Explain challenges and solutions when integrating DG into distribution systems.			2				
		UNIT-3							
5.	a).	What are inter-harmonics? Explain their causes and impacts on electrical systems.			3				
	b).	Differentiate between harmonics and transients. How does system response vary for each?			3				
		OR							
6.	a).	Discuss the effects of harmonic distortion on: (i) Power factor (ii) Transformers (iii) Capacitors and (iv) Protective devices.			6				
	b).	Explain devices used for controlling harmonic distortion in power systems.			3				

UNIT-4				
7.	a).	Define custom power. Explain the need for custom power devices in modern distribution systems.	4	3 6
	b).	Explain how static series and shunt compensators work for power quality improvement.	4	4 6
OR				
8.	a).	Explain the working principle of voltage source inverters (VSI) and their role in custom power devices with neat diagrams.	4	3 6
	b).	Describe the various reactive power and harmonic compensation devices used in distribution systems.	4	4 6
UNIT-5				
9.	a).	Explain the operation and control strategy of an Interline Power Flow Controller (IPFC) with necessary diagrams.	5	4 6
	b).	Describe the Unified Power Quality Conditioner (UPQC) with control strategies and applications in power systems.	5	4 6
OR				
10.	a).	What is a Dynamic Voltage Restorer (DVR)? Discuss its main components and functions.	5	3 4
	b).	Design and explain the control strategy for a Dynamic Voltage Restorer based on P-Q theory.	5	4 8

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a Single Question for 12 marks

Estd. 1980

Course Code: D25266B1									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
RENEWABLE ENERGY TECHNOLOGIES									
(for Power System & Automation)									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.		Explain the concept of Distributed Generation (DG) using renewable energy sources and write the benefits & challenges of when integrating it into the conventional power grid.			1				
		OR							
2.		Analyze the role of Demand-Side Management (DSM) and Supply-Side Management (SSM) in improving the efficiency and reliability of renewable energy-based power systems.			12				
					3				
		UNIT-2							
3.	a).	Explain the principle of operation of an induction generator. How does it differ from an induction motor in terms of slip and power flow?			2				
	b).	Illustrate the self-excitation process of the induction generator and explain effect of capacitance on it.			6				
		OR			3				
4.		Explain Frequency, Speed & Voltage Control and Load Control Versus Source Control for Induction Generators.			12				
					4				
		UNIT-3							
5.	a).	Derive the maximum power generated by the wind rotor with its Betz Limit.			3				
	b).	Explain Multiple-Blade Turbines and Drag Turbines (Savonius).			6				
		OR			3				
6.		Illustrate generators and speed control used in wind Power energy.			12				
					4				
		UNIT-4							
7.	a).	Illustrate Photovoltaic Effect of PV cell.			4				
	b).	Explain Perturb and Observe (P&O) MPPT method of a PV system.			6				
		OR			3				
8.	a).	Explain Incremental Conductance (INC) MPPT methods of MPPT of a PV system.			4				
	b).	Illustrate Residential and Public Illumination applications of Photovoltaic Solar Energy.			6				
					4				

UNIT-5				
9.	a).	Explain the construction and working principle of a Proton Exchange Membrane Fuel Cell (PEMFC).	5	6 3
	b).	Explain the aspects of Hydrogen as Fuel.	5	6 3
OR				
10.		Draw the equivalent circuit of the dynamic behavior of a fuel cell and explain Practical Determination of the Equivalent Model Parameters.	5	12 3

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25266B2							
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				R25			
I M.Tech. II Semester MODEL QUESTION PAPER							
BATTERY MANAGEMENT SYSTEMS AND CHARGING STATIONS							
(for Power Systems & Automation)							
Time: 3 Hrs.		Max. Marks: 60 M					
Answer ONE Question from EACH UNIT							
All questions carry equal marks							
Assume suitable data if necessary							
			CO	KL	M		
UNIT-1							
1.	a).	Describe the construction and working principle of a Sodium-Sulphur battery.	1	3	6		
	b).	How do series and parallel connections of cells influence battery pack voltage, current, and safety considerations?	1	3	6		
OR							
2.	a).	Describe the construction and working principle of a Ni-MH and Li-ion batteries.	1	3	8		
	b).	Discuss the advantages and limitations of sodium-based batteries such as Na-S and Na-NiCl ₂ (Zebra) for electric mobility.	1	3	4		
UNIT-2							
3.	a).	Differentiate between CC, CV, and CC/CV charging modes with suitable applications.	2	3	6		
	b).	Discuss pulse charging techniques for lead-acid, NiCd/NiMH, and Li-ion batteries, highlighting their advantages and challenges	2	3	6		
OR							
4.	a).	What are the key charging termination techniques to prevent overcharging and extend battery life?	2	3	6		
	b).	Compare passive and active balancing methods for EV battery packs	2	3	6		
UNIT-3							
5.	a).	Discuss the design requirements and features of a fast-charging station.	3	3	6		
	b).	Compare the operational cost and efficiency of battery swapping stations versus plug-in fast charging stations.	3	3	6		
OR							
6.	a).	Explain the concept of battery swapping stations and their role in reducing EV downtime.	3	3	6		
	b).	What is a move-and-charge zone, and how does it impact future EV charging solutions?	3	3	6		
UNIT-4							

7.	Explain various battery-pack topologies and their suitability for EV applications.	4	3	12
	OR			
8. a).	Describe the roles of voltage, current, and temperature sensing in ensuring safe battery operation.	4	3	6
b).	How does CAN bus communication facilitate monitoring and control in a BMS?	4	3	6
	UNIT-5			
9. a).	Explain the general approach to modeling batteries for EV applications.	5	3	6
b).	Explain how battery modeling helps in predicting SOC and SOH	5	3	6
	OR			
10. a).	Describe the structure and functionality of a simulation model for a rechargeable Li-ion battery.	5	3	8
b).	How does parameterization of NiCd battery models improve simulation accuracy?	5	3	4

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A,B splits** or as a **Single Question** for 12 marks

Course Code: D2536601

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

R25

II M.Tech. I Semester MODEL QUESTION PAPER

RESEARCH METHODOLOGY AND IPR

(for Power Systems & Automation)

Time: 3 Hrs.

Max. Marks: 60M

Answer ONE Question from EACH UNIT

All questions carry equal marks

Assume suitable data if necessary

		CO	KL	M
--	--	----	----	---

UNIT-1

1.	a).	Write briefly about good Research criteria.	1	2	6
	b).	What are the errors in selecting a research problem?	1	2	6

OR

2.	a).	Describe briefly the Research process with a neat sketch.	1	2	6
	b).	Describe the scope and objectives of research problems in academic and industrial contexts.	1	3	6

UNIT-2

3.	a).	Write briefly about Effective Literature studies approaches.	2	2	6
	b).	Explain about Research ethics.	2	2	6

OR

4.	a).	Write briefly about Effective technical writing.	2	3	6
	b).	Explain about the Format of research proposal.	2	3	6

UNIT-3

5.	a).	Write about the various steps in acquisition of trademarks rights.	3	2	6
	b).	Discuss research ethics and its role in maintaining academic integrity.	3	3	6

OR

6.	a).	Write briefly about International cooperation on Intellectual Property.	3	2	6
	b).	Explain the procedure for grants of patents.	3	2	6

UNIT-4

7.	a).	Explain about patent information and databases.	4	2	6
	b).	Define Intellectual Property Rights (IPR) and explain patents, designs, trademarks, and copyrights.	4	2	6

OR

8.	a).	Write briefly about scope of patent rights.	4	2	6
	b).	Write briefly about Licensing and transfer of technology.	4	2	6

UNIT-5

9.	a).	Write briefly about Administration in the patent system.	5	2	6
	b).	Explain the scope of patent rights, licensing, and technology transfer.	5	3	6

OR

10.	a.) Write briefly about New developments in IPR.	5	2	6
	b.) Explain IPR case studies involving IITs and their significance in technology commercialization	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS